

CASE STUDY 2: De-Novo Design via Generative AI and Advanced Molecular Dynamics

- **Context:** Generate *de novo* molecules for high impact targets belonging to Tyrosine Kinase family involved in neuroptosis and inflammatory pathways
- **Objective:** To leverage Medvolt's core platform and Generative AI models to design novel chemical entities (NCEs) targeting the type 3 allosteric site on a key regulatory protein, optimising compounds through an iterative reinforcement learning process and advanced molecular dynamics (MD) simulations for lead optimization

Method + Flow

sites with high specificity and stitched them into molecules

- Identified lead entities exhibiting optimal interaction with the regulatory protein's binding site of interest
- Streamlined selection of viable candidates ready for preclinical development pathways

<u>Compounds</u>	FEP Score
Reference Compound	-15.1 kcal/mol
De novo Molecule 1	-14.3 kcal/mol
De novo Molecule 2	-16.5 kcal/mol
De novo Molecule 3	-16.01 kcal/mol